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Abstract. The interference between spin-density-wave and superconducting instabilities in quasi-one-
dimensional correlated metals is analyzed using the renormalization group method. At the one-loop level,
we show how the interference leads to a continuous crossover from a spin-density-wave state to unconven-
tional superconductivity when deviations from perfect nesting of the Fermi surface exceed a critical value.
Singlet pairing between electrons on neighboring stacks is found to be the most favorable symmetry for
superconductivity. The consequences of non uniform spin-density-wave pairing on the structure of phase
diagram within the crossover region is also discussed.

PACS. 71.10.Li Excited states and pairing interactions in model systems – 74.20.Mn Nonconventional
mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism,
marginal Fermi liquid, Luttinger liquid, etc.) – 74.70.Kn Organic superconductors

1 Introduction

The problem raised by the interdependence of antiferro-
magnetism and superconductivity in low dimensional elec-
tronic materials stands among the most important chal-
lenges facing condensed matter physics in the last two
decades or so. Although this issue takes on considerable
importance in the description of high-temperature cuprate
superconductors [1–3], it likely acquired its first focus of
interest in the context of quasi-one-dimensional organic
superconductors, the Bechgaard salts [(TMTSF)2X] and
their sulfur analogs, the Fabre salts [(TMTTF)2X]. The
close proximity of antiferromagnetic correlations with the
onset of organic superconductivity in the temperature and
pressure phase diagram of these compounds soon indi-
cated that the apparent difficulty of describing both phe-
nomena could originate in their mutual interaction [4–6].

Given the dominant part played by Coulomb repul-
sion on the scene of interactions in these materials [7],
early attempts to consider the nature of superconducting
pairing suggested that in order to avoid local repulsion −
so resistant to conventional pairing [5] − electrons may
pair on different stacks [8]. The driving force for such a
pairing would derive from antiferromagnetic spin fluctua-
tions [4,5], a mechanism that can be seen as the spin coun-
terpart of what Kohn and Luttinger have proposed long
ago for pairing induced by charge (Friedel) oscillations in
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the context of isotropic metals [9]. Its influence in quasi-
one-dimensional metals, however, turns out to be more
important than in isotropic materials extending over a
larger domain of temperature in the normal phase [10,11],
and becoming further enhanced by singular spin-density-
wave (SDW) correlations near the critical pressure Pc

above which superconductivity (SC) is singled out as the
only stable state. An intrinsic difficulty of this problem
is that both SDW and SC instabilities refer to the same
electron degrees of freedom. Put at the level of elemen-
tary scattering events close to the Fermi surface, electron-
hole pairs leading to density-wave correlations interfere
with the electron-electron (hole-hole) pairs connected with
superconductivity. In previous ladder diagrammatic sum-
mation [5,7,10,12], mean-field [13,14] and RPA [15,16]
approaches to ordered phases at low temperature, inter-
ference is neglected; an assumption actually grounded on
the existence of a coherent warped Fermi surface which is
considered as sufficient to entirely decouple both types of
pairing so that each can be treated separately in pertur-
bation theory [17]. However, as the electron system decon-
fines at low temperature, namely when a Fermi liquid com-
ponent can be defined in at least two spatial directions,
interference − of maximum strength in the 1D non-Fermi
(Luttinger) liquid domain − is still present for quasi-
particles but becomes non uniform along the open Fermi
surface. It turns out that it is precisely from this un-
even pairing that the interplay between SDW and SC
states is found to take place. In practice, the treatment of
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both singularities using the renormalization group (RG)
method proved not insurmountable if interactions within
the Fermi liquid component are not too large and a reduc-
tion of the number of momentum variables in flow equa-
tions can be made. Thus at the one-loop RG level, we will
show that when density-wave and superconducting chan-
nels interfere on equal footing [18], the Kohn-Luttinger
mechanism is dynamically generated from which a crit-
ical threshold for nesting deviations lead to a SDW-SC
crossover, a feature that underlies the possibility of reen-
trant superconductivity, in fair agreement with experi-
mental findings for (TM)2X materials in general [19,20].
As far as the nature of superconductivity is concerned,
singlet interchain pairing is found to be the most favoured
symmetry of this ordered state [21].

In Section 2, we introduce the model and define the
effective theory for interacting quasi-particles at low en-
ergy. The renormalization group method is applied in Sec-
tion 3 and flow equations for the scattering amplitudes
are found. The possibilities of long-range order in either
density-wave (Peierls) or superconducting (Cooper) chan-
nel are then analyzed as a function of deviations from
perfect nesting of the Fermi surface. The results for the
couplings are corroborated by the evaluation of the re-
sponse functions in both channels. We close the Section 3
with considerations on the possibility of reentrant super-
conductivity in the crossover region. Concluding remarks
are given in Section 4.

2 The model at low energy

We shall base our theoretical description of the compe-
tition between antiferromagnetism and superconductivity
on the quasi-one-dimensional electron gas model. Consider
a system of interacting electrons in a linear array of N⊥
chains of length L (the interchain distance d⊥ = 1) and
described by the Hamiltonian

H = H0 +HI =
∑
p,k,σ

Ep(k) a†p,k,σap,k,σ

+ (LN⊥)−1πvF

∑
{k,q,σ}

(g2δσ1σ4δσ2σ3 − g1δσ1σ3δσ2σ4)

× a†+,k1+q,σ1
a†−,k2−q,σ2

a−,k2,σ3a+,k1,σ4 , (1)

where

Ep(k) = εp(k)− 2t⊥ cos k⊥ − 2t⊥2 cos 2k⊥, (2)

is the electron spectrum, while εp(k) = vF(pk − k0
F) is

the one-dimensional − linearized − part of the spectrum
close to the left and right Fermi points pk0

F = ±k0
F and

vF is the 1D Fermi velocity [k ≡ (k, k⊥)]. The interchain
single electron hopping t⊥ is considered as small com-
pared to the Fermi energy EF = vFk

0
F (~ = 1), which is

fixed to be half of the bandwidth cut-off E0 ≡ 2EF along
the chains. The even smaller transverse hopping term to
second nearest-neighbor chains t⊥2 � t⊥ is included in or-
der to parametrize nesting deviations of the entire Fermi

surface. As for the interacting part HI, we follow the usual
‘g-ology’ decomposition of the direct interaction between
carriers defined close to the 1D Fermi points and retain the
backward g1 and forward g2 scattering amplitudes − here
normalized by πvF − between right- and left-moving car-
riers [22]. Given the metallic conditions, one can take into
account of the influence of umklapp scattering through a
renormalization of g2 at low energy [6,7,23,24].

In the following, we will examine the properties of
the model in the gapless regime at sufficiently low en-
ergy scale, that is when a coherent interchain motion for
electrons prevails and a Fermi liquid component can be
defined. More specifically, we will focus on the effective
Hamiltonian or − which will be more convenient for our
purposes − on the effective action of the system having
Ex � E0 as a new bandwidth cut-off for electrons in
the neighborhood of an open but warped Fermi surface.
This corresponds to the temperature domain T < Ex/2
(kB = 1) of transverse coherence at the single-particle
level [25]. Application of the RG method in the 1D energy
domain allows the systematic integration of high-energy
degrees of freedom [25]. The resulting partition function
for our model can then be expressed as a functional
integral

Z = Tr e−βH

∼
∫∫

<

Dψ∗Dψ eS
∗[ψ∗,ψ] (3)

over the fermion fields ψ having energies below Ex. In
the Fourier-Matsubara space, the essential contributions
to the effective action S∗ − up to a renormalization factor
for the fields − can be written in the form

S∗[ψ∗, ψ] = S∗0 [ψ∗, ψ] + S∗I [ψ∗, ψ]

=
∑
p,σ

∑
{k̃}∗

[G0
p(k̃)]−1 ψ∗p,σ(k̃)ψp,σ(k̃)

− πvF

∑
µ,Q̃,

Jµ(q⊥, `x)O∗µ(Q̃)Oµ(Q̃) + . . . ,

(4)

where

G0
p(k̃) = [iωn −E∗p(k)]−1, (5)

is the ‘free’ propagator in which the substitutions t⊥(2) →
t∗⊥(2) < t⊥(2) lead to the renormalization of the spectrum

Ep → E∗p [here k̃ = (k, ωn = ±πT,±3πT, . . . )]. The cut-
off Ex ≈ t∗⊥ fixes the maximum energy (or twice the max-
imum temperature) and the range {k}∗ of wavevectors in
the deconfined region. The right (resp. left) warped open
Fermi surface is parametrized by k⊥

kF(k⊥) = ±
(
k0

F + 2
t∗⊥
vF

cos k⊥ + 2
t∗⊥2

vF
cos 2k⊥

)
. (6)

It is convenient to write the effective interaction between
electrons denoted S∗I in (4) as products of electron-hole
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pair fields

Oµ(Q̃) =
√

T

LN⊥

∑
α,β{k̃}∗

ψ∗−,α(k̃− Q̃)σαβµ ψ+,β(k̃) (7)

describing CDW (µ = 0) and SDW (µ = 1, 2, 3) correla-
tions, where σ0 and σ1,2,3 are the identity and Pauli ma-
trices respectively [Q̃ = (2k0

F + q, q⊥, ωm = 0,±2πT, . . . ),
q � 2k0

F]. These correlations are associated to the combi-
nations of couplings

Jµ=0(q⊥, `x) = −1
2

(g∗2 − 2g∗1) + j⊥0 cos q⊥,

Jµ6=0(q⊥, `x) = −1
2
g∗2 + j⊥µ cos q⊥, (8)

for the CDW and SDW amplitudes respectively, where the
g∗i are the renormalized intrachain couplings evaluated at
`x (Ex = E0e−`x). The q⊥ dependence comes from the
interchain short-range correlations that are generated in
the 1D energy interval from the combined influence of gi
and t⊥, that is from E0 down to Ex. The correspond-
ing interchain pair hopping amplitudes denoted j⊥µ, fol-
low from an explicit RG calculation and then modify the
boundary conditions for the low-energy description [25].
Jµ is taken independent of the longitudinal momentum
and Matsubara frequency which is irrelevant (in the RG
sense) in the 1D domain. This independence is assumed to
carry over at lower energy as implied for example in the
k-dependence of boundary conditions (8), where the cou-
plings defined with respect to 1D Fermi points are used
to describe scattering events on energy edges ±Ex/2 with
respect to a warped Fermi surface.

3 Interference between density-wave
and superconductivity

The nature of correlations that can naturally develop in
the deconfined region for electrons is linked in the first
place to the amplitude and sign of Jµ. For repulsive cou-
plings g1,2 > 0, the SDW coupling (µ 6= 0) is negative and
the most favorable, while the CDW one, though poten-
tially of the right sign, is sizably weaker in amplitude at
T > Ex/2. In the second place, the possibility for these
correlations to develop long-range order at lower tempera-
ture is bound to the singular (logarithmic) response of the
system to produce staggered density-wave correlations; it
relies on the electron-hole symmetry of the spectrum, that
is on nesting properties. For an open Fermi surface, how-
ever, the singular response to electron-hole pairing, al-
beit weakened by t⊥2, competes with the response of the
Cooper channel for electron-electron pairing, which is also
singular and unaltered by nesting deviations.

3.1 One-loop renormalization group

The summation of the leading interfering contributions of
the perturbation theory below Ex is best obtained from

the application of the RG method. The technique consists
in partial integrations of Z over fermion degrees of freedom
denoted as ψ̄(∗) in the outer energy shell (o.s) ±Ex(`)d`/2
above and below the warped Fermi surface [25], where
Ex(`) = Exe−` with ` > 0, is now the scaled bandwidth
below Ex. Focusing on the results at the one-loop level,
we have

Z ∼
∫∫

<

Dψ∗Dψ eS
∗[ψ∗,ψ]`

∫∫
o.s

Dψ̄∗Dψ̄ eS
∗
0 eS

∗
I,2 + ...

∝
∫∫

<

Dψ∗Dψ eS
∗[ψ∗,ψ]` + 1

2 〈S
∗2
I,2〉o.s + ... (9)

where 〈(S∗I,2)2〉o.s are the one-loop outer energy shell aver-
ages calculated with respect to S∗0 [ψ̄∗, ψ̄], which ultimately
lead to the renormalization (flow) of the Jµ couplings in
S as a function of `. Explicitly, by taking S∗I,2 as a decom-
position of the interaction having two fields among four
to be contracted in the outer shell and retaining the con-
tributions coming from the Peierls and Cooper channels,
one finds

S∗I,2 = SP
I,2 + SC

I,2

= −πvF

∑
µ

∑
−
k̃

∑
{k̃′,Q̃}∗

Jµ(q⊥ − k′⊥, k′⊥; `)

×Ō∗µ(k̃− Q̃0)Oµ(k̃′ − Q̃) + c.c

+πvF

∑
µ̄

∑
−
k̃

∑
{k̃′,Q̃c}∗

Wµ̄(k⊥, k′⊥; `)

×Ō∗µ̄(k̃)Oµ̄(k̃′ − Q̃c) + c.c , (10)

in which
∑
− k is a sum in the outer momentum shell. Fol-

lowing (7), we have also defined
∑

k̃Oµ(k̃− Q̃) = Oµ(Q̃)
for the Peierls fields, whereas in the Cooper channel, we
have introduced the new fields

Oµ̄(k̃− Q̃c) =√
T

LN⊥

∑
α,β

αψ−,−α(−k̃ + Q̃c)σαβµ̄ ψ+,β(k̃) (11)

for singlet (µ̄ = 0; SS) and triplet (µ̄ 6= 0; TS) pair-
ings, where Q̃C = (qC, q⊥C, ωmC) corresponds to the mo-
mentum and frequency of the Cooper pair. For the fields
to be integrated out in the contractions (10), the static
Peierls and Cooper external variables have been set to
Q̃0 = (2k0

F, q⊥, 0) and Q̃C = 0 respectively.
The contraction in the Cooper channel yields the com-

binations of couplings

Wµ̄=0 = −1
2
J0 +

3
2
Jµ6=0

Wµ̄ 6=0 =
1
2
J0 +

1
2
Jµ6=0 (12)

for SS and TS Cooper pairings. The explicit evaluation of
1
2 〈(S∗I,2)2〉o.s, is given in the Appendix A. In the case of
the Cooper contraction, one can invert the relations (A.4)
to re-express 1

2 〈(SCI,2)2〉o,s in terms of pair fields of the
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Fig. 1. Variation of the SDW coupling Jµ6=0(k⊥, k
′
⊥; `) in the transverse wave vector (k⊥, k

′
⊥) plane close to an instability

(` → `SDW,c). (a): t∗⊥2 = 0; (b): below but close to t∗c⊥2 = 6.25 K; (c): crossover region; (d): above the crossover. The vertical
scale is arbitrary.

Peierls channel. Together with 1
2 〈(SPI,2)2〉o.s this yields the

one-loop flow equations

d
d`
Jµ(q⊥ − k⊥, k⊥; `) =

1
N⊥

∑
µ̄,k′⊥

cµ,µ̄
[
Wµ̄(q⊥ − k⊥, k′⊥; `)

×Wµ̄(k′⊥, k⊥; `)
]
IC(`)

− Jµ(q⊥ − k⊥, k⊥; `)
1
N⊥

∑
k′⊥

[
Jµ(q⊥ − k′⊥, k′⊥; `)

× IP(q⊥, k′⊥; `)
]
, (13)

where the first term comes from the Cooper contrac-
tion with the constants c0,0 = −1/2, c0,µ̄6=0 = 1/2 and
cµ6=0,0 = 1/2, cµ6=0,µ̄6=0 = 1/6 and the thermal transient
IC(`) = tanh[βEx(`)/4]. As for the Peierls contraction
in the second term, a kernel IP(q⊥, k⊥; `) follows from
the evaluation of the Peierls loop which is given in Ap-
pendix A. Reverting to the initial form of the action at
`x given in (4), we see that the interference between both
channels does not conserve the dependence on a single
transverse Peierls variable q⊥ for Jµ; the scattering am-
plitudes now depend on both ingoing [± ∼ kF(k⊥), k⊥]
and outgoing [∓ ∼ kF(k⊥ − q⊥), k⊥ − q⊥] momentum
(note that Jµ in (10) is symmetric with respect to the
interchange k⊥ ↔ k′⊥). The extra k⊥ dependence leads
to non-uniform electron-hole pairing, which gives valuable
information about the strength of the scattering matrix el-

ement and in turn the formation of the order parameter
along the Fermi surface.

The information concerning density-wave or super-
conducting instabilities of the normal state is obtained
from the singularities of the flow equations. Although
2D systems cannot sustain these forms of long-range or-
der at finite temperature (or finite `), the temperature
Ti = E(`i)/2 at which the singularity occurs is never-
theless indicative of the temperature range of true long-
range ordering if a finite coupling in the third direction is
added. Tackling first the possibility of a SDW instability
in the absence of nesting deviations (t∗⊥2 = 0) and when
repulsive interactions g∗i=1,2, j⊥ prevail at Ex, the SDW
coupling Jµ6=0(q⊥− k⊥, k⊥; `) is found to be the most sin-
gular as a function of `. By way of illustration, if we take
g1 = 0.71, g2 = 0.80 and t⊥ = 160 K at EF = 3600 K, the
1D two-loop RG results yield [25], g∗1 = 0.17, g∗2 = 0.54,
and j⊥µ6=0(0) = 0.33(0.024) as boundary conditions at
Ex = t∗⊥ = 120 K. Thus feeding (13) with the latter initial
conditions, the solution of the flow equation does predict
a singularity at `SDW corresponding to a critical tempera-
ture TSDW = Ex(`SDW)/2 ≈ 8.5 K, which falls in the range
of experimental TSDW in (TM)2X when metallic condi-
tions prevail and nesting deviations (t⊥2) are small [19].
The singularity occurs along the lines k′⊥ = ±π − k⊥
(Fig. 1a) and is associated with the SDW modulation vec-
tor QP = (2k0

F, q⊥ = π) which is the best nesting vec-
tor of the model. On closer examination, Figure 1a shows
that the scattering amplitude is not uniform, especially in
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Fig. 2. Variation of the SDW normalized scattering amplitude
d(k⊥) ≡ Jµ6=0(π − k⊥, k⊥)/Jmax

µ6=0 close to `SDW,c or the gap
(∆µ6=0 ∝ d(k⊥)) below TSDW along the Fermi surface kF(k⊥)
parametrized by k⊥. (a): below the threshold for t∗⊥2 = 0 (1),
and t∗⊥2 close to t∗c⊥2 (2); (b): above the threshold for t∗⊥2

close to t∗c⊥2 in the crossover region (1) and t∗⊥2 above the
crossover domain (2). The dashed curve corresponds to the
variation of the interchain singlet gap along the Fermi surface
|∆(k⊥)|/∆0 = | cos k⊥|. The inset of (a) shows the location of
cold (light) and hot (dark) spots on the Fermi surface.

regions centered at k⊥ = ±π/2 (resp. k⊥ = 0,±π), which
can be seen as ‘cold spots’ (resp. hot spots) where a de-
crease of ∼50% in the scattering intensity is found. This
variation denoted d(k⊥) in Figure 2 reflects in turn the one
of the SDW order parameter along the Fermi surface [26].
Therefore the interference with the Cooper channel mod-
ifies significantly the variation of the SDW gap along the
Fermi surface even though nesting deviations are absent.
As we will see below, these cold regions actually coincide
with the nodes of an interchain superconducting gap at
sufficiently large t∗⊥2.

Now if we try to mimic the influence of pressure, its
effect can be parametrized through the growth of t∗⊥2.
Thus by taking dEF(vF)/dt∗⊥2 ≈ 90, the RG procedure in
the 1D regime [25] gives dg∗1(2)/dt

∗
⊥2 ≈ −2.5%(−4%)/K,

dj⊥µ6=0(0)/dt∗⊥2 ≈ −4%(−8%)/K and dEx/dt∗⊥2 ≈ 5.
These variations lead to a monotonic decrease of TSDW

at small t∗⊥2 and ultimately initiate a rapid drop of
TSDW (Fig. 3). Along this drop, the electron system, al-
beit still unstable to the formation SDW order, develops
a scattering amplitude and in turn an order parameter
that is highly non uniform on the Fermi surface. ‘Hot’
(resp. ‘cold’) spots close to (∼±kF(k⊥), k⊥=0,±π) [resp.
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Fig. 3. Variation of the critical temperature as a function
of the amplitude of nesting deviations t∗⊥2. The shaded area
corresponds to the crossover region where reentrant supercon-
ductivity can occur.

(∼ ±kF(k⊥), k⊥ = ±π/2)] are really taking shape and
their locations on the Fermi surface are kept fixed by the
interaction with Cooper pairing as t∗⊥2 varies (Figs. 1, 2).
This contrasts with the results of mean-field theory of
the SDW state for which only nesting deviations are in-
volved and lead to a qualitatively different variation of the
gap [27]. As we will see below, a non uniform gap leads
to an important reduction of condensation energy for the
SDW state.

As t∗⊥2 is further increased, the critical line in Fig-
ure 3 develops an inflexion point at t∗c⊥2 (t∗c⊥2 ≈ 6.25 K
using the above figures) above which the scattering am-
plitude becomes warped by a singular modulation in the
k⊥, k′⊥ plane at `c (Fig. 1c). This signals an instability at
Tc = Ex(`c)/2, which involves an additional channel con-
nected with superconductivity. In order to see what type
of superconducting pairing scales to strong coupling, it is
natural to make a Fourier decomposition of Jµ. Given the
relation for the scattering amplitude in S, that is

−
∑
µ

∑
{k̃,k̃′,Q̃}∗

Jµ(q⊥ − k⊥, k′⊥; `)O∗µ(k̃ + Q̃) Oµ(k̃′ − Q̃)

=
∑
µ̄

∑
{k̃,k̃′,Q̃c}∗

Wµ̄(k⊥, k′⊥; `) O∗µ̄(k̃ + Q̃c) Oµ̄(k̃′ − Q̃c)

(14)

and the property Wµ̄(k⊥, k′⊥; `) = Wµ̄(−k⊥,−k′⊥; `), one
can write

Wµ̄(k⊥, k′⊥; `) = a0
µ̄(`)

+
∞∑

m,n>0

[
am,nµ̄ (`) cos(mk⊥) cos(nk′⊥)

+ bm,nµ̄ (`) sin(mk⊥) sin(nk′⊥)
]
, (15)

which allows one to express the interaction in the Cooper
channel as a sum of potential with separate variables with
Fourier coefficients am,nµ̄ (`) and bm,nµ̄ (`) that are scale de-
pendent (here the coefficients am,n and bm,n with m 6= n
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are essentially zero). In this way, to each Fourier ampli-
tude corresponds an interchain superconducting coupling
of different orbital symmetry in the SS (µ̄ = 0) and TS
(µ̄ 6= 0) channels. As is obvious from the parity of the mod-
ulation in Figures 1c–d, the positive coefficient a1,1

µ̄=0(`) of
the first harmonic dominates and is singular at `c; it cor-
responds to an instability for singlet (µ̄ = 0) pairing be-
tween nearest-neighbor chains having a symmetric orbital
part and a spin part that is antisymmetric. From (12), a
smaller contribution of the same Fourier coefficient also
applies to triplet superconductivity (µ̄ 6= 0), but this pair-
ing is not globally antisymmetric and remains inactive for
both short-range and long-range orders. Actually, our re-
sults show that the first positive triplet pairing coefficient
satisfying symmetry requirements is rather contained in
the much smaller Fourier coefficient b2,2µ̄6=0(`) having odd
orbital parity for pairing between second nearest-neighbor
chains.

One can then define a finite t∗⊥2 interval above t∗c⊥2

in which both SS(a1,1
µ̄=0) and SDW(Jµ6=0) pairings scale

to strong coupling. This region is delimited by a shaded
area in Figure 3 and can be equated with the SDW-SS
crossover region. Although a one-loop weak coupling ap-
proach does not allow one to make definite conclusions
about the actual structure of the phase diagram in the
crossover domain, from the variation of the strength of
electron-hole pairing Jµ6=0 (or the SDW gap) across the
Fermi surface (Fig. 2b), it is possible at a more qualita-
tive level to infer that superconductivity will be the most
stable state at low temperature in that region of the phase
diagram (cf. Sect. 3.3).

The regular but rapid variation under pressure of
Tc(t∗⊥2) above the crossover in Figure 3 can be obviously
understood as the reduction of the density-wave correla-
tions that feed the Cooper channel.

3.2 Response functions

The temperature dependence of the amplitude of correla-
tions leading to the instabilities of the phase diagram can
be obtained from the calculation of response functions in
both Peierls and Cooper channels. To do so in the RG
framework, we follow the work of reference [25] and cou-
ple the electrons to a set of source fields at Ex

Sh[ψ∗, ψ] =
∑
µ

zµ
[
O∗µ(QP)hµ(QP) + c.c

]
+
∑
µ̄,{k̃}∗

z
(n)
µ̄

[
O∗µ̄(k̃)h(n)

µ̄ (k⊥) + c.c
]
, (16)

where the source fields hµ are taken independent of the
frequency for the static response at QP = (2k0

F, π) in the
Peierls channel; whereas in the Cooper channel we are in-
terested in the nth harmonic of the static interstack pair-
ing response at Q̃C = 0 with h

(n)
0 (k⊥) = h

(n)
0 cos(nk⊥)

for SS and h
(n)
µ̄ 6=0(k⊥) = h

(n)
µ̄ 6=0 sin(nk⊥) for TS. Here the

z
(n)
µ(µ̄) are the corresponding vertex corrections, which for

simplicity are put equal to unity at Ex [28].
Performing successive partial traces according to (9),

the one-loop corrections yield

Sh[ψ∗, ψ]` =
∑
µ

zµ(`)
[
O∗µ(QP)hµ(QP) + c.c

]
+
∑
µ̄,{k̃}∗

z
(n)
µ̄ (`)

[
O∗µ̄(k̃)h(n)

µ̄ (k⊥) + c.c
]

+
∑
µ

χµ(`)h∗µ(QP)hµ(QP)

+
∑
µ̄,k⊥

χ
(n)
µ̄ (`)h(n)∗

µ̄ (k⊥)h(n)
µ̄ (k⊥), (17)

where the pair vertex corrections are obtained from the
contractions 〈SI,2Sh,2〉o.s which involved electron-hole and
electron-electron loops whose evaluation is similar to the
one given in Appendix A. The pair vertex parts are then
governed by the flow equations

d
d`

ln zµ(`) = − 1
N⊥

∑
k⊥

[
Jµ(π − k⊥, k⊥; `)

× IP(π, k⊥; `)
]

(18)

in the Peierls channel and

d
d`

ln z(n)
µ̄=0(`) =

1
2
an,nµ̄=0(`)IC(`) (19)

d
d`

ln z(n)
µ̄6=0(`) =

1
2
bn,nµ̄6=0(`)IC(`), (20)

in the Cooper channel.
The last two terms in (17) come from the contraction

1
2 〈S2

h,2〉o.s, which generates expressions that are quadratic
in the source fields and whose coefficients

χ
(n)
µ(µ̄)(`) = (πvF)−1

∫ `

0

[z(n)
µ(µ̄)(`

′)]2 d`′ (21)

correspond to the static response function (defined as pos-
itive). From the integration of the flow equations for the
pair vertex parts (18–20), the temperature dependence of
SDW and SC pairing responses are calculated with the
set of coupling parameters used in Figure 3. Below t∗c⊥2,
the SDW response dominates for all temperatures and
becomes singular at TSDW (Figs. 4a, b). In the crossover
region, however, both SDW and SS become large but it
is only very close to Tc that the amplitude of SS response
catches up with the SDW one (Fig. 4c). Finally above
the crossover (Fig. 4d), the SS correlations diverge at Tc

whereas SDW correlations, albeit still enhanced, show no
sign of singular behavior. In Figures 4c, d, we verify that
the amplitude of interstack n = 2 triplet superconduct-
ing response χ(2)

TS(T ) is scarcely enhanced so it essentially
merges with the free or non interacting (logarithmic) limit
χFree(T ) over the whole temperature range.
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Fig. 4. Response functions at t∗⊥2 = 0 (a), close to but below (b) and above the threshold (c) t∗c⊥2, and well above t∗c⊥2 (d).

3.3 On the possibility of reentrant superconductivity

Before closing this section, we would like to examine on
a qualitative basis the consequences of non uniform pair-
ing on the relative stability of the SDW and SS order
parameters in the crossover region. In the light of the
above results, the profile of the SDW scattering amplitude
Jµ(k⊥ − q⊥, k⊥; `), albeit singular on the lines q⊥ = ±π
for all k⊥ as `→ `SDW,c (Figs. 1a–c, 2, 4a–c), reflects the
variation d(k⊥) of the order parameter and in turn the one
of the SDW gap ∆µ6=0(k⊥) along the Fermi surface within
the ordered phase. Therefore if the SDW transition occurs
first, the reduction of the gap in cold regions will lower the
SDW condensation energy with respect to the case where
a uniform gap would be created. This reduction along with
the one of TSDW (Fig. 3) continues up to the crossover re-
gion where the condensation energy becomes comparable
and ultimately weaker than the one of a superconducting
ordered state having a lower critical temperature but a
singlet gap ∆(k⊥) = |∆0| cos k⊥ that would be more de-
veloped along the Fermi surface (Fig. 2b). This crossing
of condensation energy will then signal a first-order tran-
sition from SDW to the SS state − a possibility known
as reentrant superconductivity as pointed out by Yamaji
in the framework of a phenomenological mean-field theory
of the competition between SDW and s-wave states in the
Bechgaard salts [29].

A quantitative analysis of reentrance in the present
context would require a microscopic derivation of the tem-

perature dependent Landau free energy at T < TSDW,
which includes interference effects between the density-
wave and Cooper channels, a derivation that is beyond the
scope of the present paper. More qualitatively, however, it
is possible to estimate the extent of the reentrance on the
t∗⊥2 scale by making few assumptions on the form taken by
condensation energy in the zero temperature limit. Thus
if the drop in energy (here expressed per chain and per
unit of length) with respect to the normal phase can be
expanded in powers of the gap, one can write in lowest
order

δEi[∆i] ' −
1
2

(πvF)−1Ci
1
N⊥

∑
k⊥

∆2
i (k⊥) + . . . , (22)

for i =SDW and SS, where Ci is a constant (within
the mean-field (BCS) theory, Ci = 1, and δEi is purely
quadratic [30]). Taking ∆SDW(k⊥) = |∆µ6=0 | d(k⊥) and
∆SS(k⊥) = |∆0| cos k⊥ for the SDW and a SS gaps respec-
tively and assuming a BCS-like correspondence |∆i |∼ Tc,i

between the maximum amplitude of the gap at zero tem-
perature and the critical temperature, the ratio of conden-
sation energies will take the approximate form

δESDW

δESS
≈ T 2

SDW

T 2
c

2N−1
⊥
∑
k⊥

d2(k⊥). (23)

Thus by extracting d(k⊥) from the normalized scattering
amplitude along k′⊥ = ±π−k⊥ (Fig. 2b), the ratio of con-
densation energies becomes invariably smaller than unity
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for Tc not too far below TSDW in the crossover region.
This indicates that whenever SDW is first stabilized in
that part of phase diagram, the conditions are favorable
for reentrant superconductivity. The corresponding SDW-
SS equilibrium curve should join the critical line with a
positive slope.

4 Concluding remarks

In the light of previous results interesting conclusions can
be drawn. Concerning first the applications to real mate-
rials like the Bechgaard salts and their sulfur analogs, the
present approach may serve as a microscopic basis towards
a synthesis of itinerant antiferromagnetism and unconven-
tional superconductivity in these compounds. This would
include the description of systems like the spin-Peierls
Fabre salt (TMTTF)2PF6 for which a crossover from itin-
erant antiferromagnetism to superconductivity has been
found under very high pressure [20,31,32].

The interplay between SDW and SS correlations has
various impacts which may cast new light on both types
of ordering. Starting with the normal phase, the calcula-
tion of the response functions shows that both types of
correlations can be enhanced in the same temperature do-
main, indicating that the different ordering factors inter-
fere constructively − this is particularly manifest within
the narrow confines of reentrant superconductivity in the
crossover domain. Another impact concerns the descrip-
tion of the SDW state itself, which shows qualitative dif-
ference with respect to mean-field prediction as a result of
interference with superconductivity. All this goes to show
that nesting conditions do not govern alone the charac-
terization of the SDW state, but that Cooper pair corre-
lations have a determining influence leaving their stamp
on electron-hole pairing or the SDW gap along the Fermi
surface. The impact of interference on the properties of
normal state in the vicinity of a SDW ordering is also of
interest. It indeed provides a microscopic basis as to the
origin and the location of cold and hot spots on the Fermi
surface which are suspected to be important in explaining
anomalous magnetotransport effects close to t∗c⊥2 [33,34].

The physical picture of interfering channels in the
emergence of superconductivity naturally connects to the
physics of the field-induced SDW states in which geomet-
rical properties (nesting) of the Fermi surface play such
an important role [27,35,36]. In this matter, it would be
worth examining the weakening of the interference when
a magnetic field is turned on close to the crossover on the
SS side, namely where FISDW states are found [37]. The
presence of a field (oriented properly) will weaken both
the infrared singularity of the Cooper channel and nest-
ing deviations, which should tip the balance in favour of
a single channel or mean-field description [35,36]. How-
ever, it is possible that some traces of interference are still
present and may affect to some extent the profile of the
gap and hence the properties of the FISDW state.

The present theoretical weak coupling calculation of
the critical temperatures cannot pretend to be quantita-
tive, given the reduction of variables in obtaining the flow

equations, especially those related to dynamical (retar-
dation) effects which are likely to become relevant within
the crossover region when both SDW and SS pairings scale
to strong coupling. However we think that our approach
embodies the essential ingredients of the competition be-
tween SDW and SC states in these materials.
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Recherches Avancées (CIAR) for financial support.

Appendix A: One-loop contractions

A.1 Cooper channel

From the last term of the outer shell decomposition in
(10), the contraction in the Cooper channel evaluated at
Q̃c = 0 reads

1
2
〈(SC

I,2)2〉o.s = (πvF)2
∑
µ̄1,µ̄2

∑
{k̃,k̃′Q̃C}∗

∑
−

{k̃1,k̃2}

× 〈Wµ̄1(k⊥, k⊥,1; `)Ō∗µ̄1
(k̃1)Ōµ̄2(k̃2)Wµ̄2(k⊥,2, k′⊥; `)〉

× O∗µ̄2
(k̃ + Q̃C)Oµ̄1(k̃′ − Q̃C) δµ̄1,µ̄2δk̃1,k̃2

, (A.1)

where the outer shell average is given by

∑
−
k̃1

〈Wµ̄(k⊥, k⊥1; `)Ō∗µ̄(k̃1)Ōµ̄(k̃1)Wµ̄(k⊥1, k
′
⊥; `)〉

= 2
T

LN⊥

∑
ωn

∑
−
k1

[
Wµ̄(k⊥, k⊥1; `)G0

+(k1, ωn)

×G0
−(−k1,−ωn)Wµ̄(k⊥1, k

′
⊥; `)

]
= (2πvF)−1 1

N⊥

∑
k⊥1

Wµ̄(k⊥, k⊥1; `)Wµ̄(k⊥1, k
′
⊥; `)

×
∫

o.s

tanh β
2E+

E+
dE+, (A.2)

where the last line follows from the frequency sum and the
use of the relation

1
2π

∫∫
dSdE+

| ∇E+ |
. . . =

1
N⊥vF

∑
k⊥1

∫
dE+ . . .

for the curve integral over constant energy shell. The in-
tegral in the outer energy shell is made over the intervals
[−Ex(`)/2,−Ex(`+d`)/2] and [Ex(`+d`)/2, Ex(`)/2], and
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yields the result for the Cooper contraction

1
2
〈(SC

I,2)2〉o.s = πvF

∑
{k̃,k̃′}∗

d`
N⊥

∑
k⊥1

[
Wµ̄(k⊥, k⊥1; `)

× Wµ̄(k⊥1, k
′
⊥; `) IC(`)O∗µ̄(k̃ + Q̃C)Oµ̄(k̃′ − Q̃C),

(A.3)

where IC(`) = tanh[βEx(`)/4]. Using the relations∑
{k̃,k̃′,Q̃}

O∗0(k̃ + Q̃)O0(k̃′ − Q̃) =

∑
{k̃,k̃′,Q̃C}

{ 1
2
O∗µ̄=0(k̃ + Q̃C)Oµ̄=0(k̃′ − Q̃C)

− 1
2

∑
µ̄6=0

O∗µ̄(k̃ + Q̃C)Oµ̄(k̃′ − Q̃C)
}

∑
{k̃,k̃′,Q̃}

∑
µ6=0

O∗µ(k̃ + Q̃)Oµ(k̃′ − Q̃) =

∑
{k̃,k̃′,Q̃c}

{
− 3

2
O∗µ̄=0(k̃ + Q̃C)Oµ̄=0(k̃′ − Q̃C)

− 1
2

∑
µ̄ 6=0

O∗µ̄(k̃ + Q̃C)Oµ̄(k̃′ − Q̃C)
}
, (A.4)

this result can be rewritten in terms of products of Peierls
fields contributing to the first term of the flow equation
for Jµ (Eq. (13)).

A.2 Peierls channel

From the first two terms of (10), the contractions in the
Peierls channel are given by

1
2
〈(SP

I,2)2〉o.s = (πvF)2
∑
µ1,µ2

∑
{k̃,k̃′,Q̃}∗

∑
−

{k̃1,k̃2}

×
[
〈Jµ1(q⊥ − k⊥1, k⊥1; `)Ō∗µ1

(k̃1 + Q̃0)Ōµ2(k̃2 − Q̃0)

× Jµ2(q⊥ − k′⊥, k′⊥; `)O∗µ2
(k̃ + Q̃)Oµ1(k̃′ − Q̃)

× δµ1,µ2δk̃1+Q̃0,k̃2

]
, (A.5)

in which we define

F (q⊥) =
∑
−
k̃1

〈Jµ(q⊥ − k⊥1, k⊥1; `′)Ō∗µ(k̃1 + Q̃0)Ōµ(k̃1)〉

= −2
T

LN⊥

∑
ωn

∑
−
k1

[
Jµ(q⊥ − k⊥1, k⊥1; `)

×G0
+(k1 + Q̃0, ωn)G0

−(k1, ωn). (A.6)

As a function of q⊥, the electron and hole of the Peierls
loop cannot be put simultaneously in the outer energy
shell for all values of k⊥1 in the Brillouin zone. Parts of
the k⊥1 summation would then refer to Jµ obtained at
previous values of `. However, this variation of Jµ with `
within the k⊥1 interval will be neglected consistently with

the absence of dependence on the longitudinal momentum
for the couplings. After a frequency sum, one then finds

F (q⊥) = (2πvF)−1 1
N⊥

∑
k⊥1

Jµ(q⊥ − k⊥1, k⊥1; `)

×
∫

o.s

tanh β
2 [E− +A(k⊥1, q⊥)] + tanh β

2E−

2E− +A(k⊥1, q⊥)
dE−,

(A.7)

where

A(k⊥1, q⊥) = 2t∗⊥[cos k⊥1 + cos(k⊥1 + q⊥)]
+ 2t∗⊥2[cos 2k⊥1 + cos(2k⊥1 + 2q⊥)]. (A.8)

Integrating in the outer energy shell yields

1
2
〈(SP

I,2)2〉o.s = (πvF)
∑
µ

∑
{k̃,k̃′,Q̃}∗

d`
N⊥

∑
k⊥1

×
[
IP(q⊥, k⊥1, `)Jµ(q⊥ − k⊥1, k⊥1; `)

× Jµ(q⊥ − k′⊥, k′⊥; `)
]

× O∗µ(k̃ + Q̃)Oµ(k̃′ − Q̃), (A.9)

where

IP(q⊥, k⊥1, `) =
Ex(`)

4

∑
p=±

[
tanh

β

4
Ex(`)

+tanh
β

2
[Ex(`)/2+pA(k⊥1, q⊥)]

]
/[Ex(`)+pA(k⊥1, q⊥)].

(A.10)
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